
Sa
mp
le

Functional

Design Patterns
Express.js

for

elegant, maintainable Node.js backends.
A step-by-step guide to building

POST /books HTTP/1.1
Content-Type: application/json
Content-Length: 292

{
 "author": "Jonathan Lee Martin",
 "category": "learn-by-building",
 "language": "JavaScript"
}

Sa
mp
le

!íÈ�è¯ÏÈ�Á ��á¯¦È R�èè�ÝÈá ¥ÏÝ �þÚÝ�ááʧ»á

� áè�Úʋ�ÿʋáè�Ú ¦í¯�� èÏ �í¯Á�¯È¦ �Á�¦�Èèʢ Ç�¯Èè�¯È��Á� AÏ��ʧ»á
���¾�È�áʧ

By Jonathan Lee Martin

Copyright © 2019 by Jonathan Lee Martin

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the author prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, contact:

Jonathan Lee Martin
hello@jonathanleemartin.com
https://jonathanleemartin.com

“Node.js” and the Node.js logo are trademarks of Joyent, Inc.

Scripture quotations taken from the New American Standard Bible® (NASB).
Copyright © 1960, 1962, 1963, 1968, 1971, 1972, 1973, 1975, 1977, 1995 by The Lockman Foun-
dation. Used by permission. www.Lockman.org

¯¯¯

mailto:hello@jonathanleemartin.com
https://jonathanleemartin.com

Sa
mp
le

ÏÈè�Èèá

Acknowledgments ix
Technical Reviewers . ix

Introduction xi
Why Express? . xi
Approach . xii
Topics . xii
Prerequisites . xiii
Let’s Get Started . xiv

I Express Essentials 1

1 How Servers Talk 3
HTTP: The Core Abstraction of the Web . 3
Installing telnet . 4

On Linux . 4
On macOS . 4

An HTTP Conversation with telnet . 5
Talking to a Backend API . 8
Making Requests with Insomnia . 8
Go Further . 12

2 Responding to Requests 13
Simple Servers with the httpModule . 14
Speaking HTTP over Telnet . 15
Responding to Different Routes . 16
Hello, Express . 18
Express Shorthands . 19
Go Further . 21

Multiple Response Types . 21

3 Express Router 23
Refactoring with the Router Pattern . 23
Express Router . 27
Functions with Methods . 29
Routes with Dynamic Segments . 29

ø

Sa
mp
le

ø¯
ÎÈç�Èçà

Using Multiple Routers . 32
Extracting Routers into Files . 33
Go Further . 36

Routing on the Accept Header . 36

4 Working with Request Bodies 39
Request Body Lifecycle . 39
Reading Request Bodies . 42
Finishing Up the Create Endpoint . 44
Update and Delete . 48
Express .route()Method . 50
Go Further . 51

II Middleware 53

5 Middleware 55
Cross Cutting with Middleware . 56
Passing Data to Routes . 59
Route Middleware . 61
Middleware is Everywhere . 64
Go Further . 65

Error Handling Middleware . 65

6 Common Middleware 67
Logging with Morgan . 67
Body Parser . 68
Middleware Factories . 69
Compression . 70
Serving a Frontend . 72
File Uploads with Multer . 74
Serving Static Files with a Path Prefix . 78
Accepting Multiple Body Types . 79
Go Further . 81

URL Encoded Bodies . 81
PATCH Things Up . 81
MIME Types . 82

III Authentication & Authorization 83

7 Basic Authentication 85
Authorization Header . 85
Handling Authentication with Middleware . 87
Graceful Global Middleware . 90
Requiring Authentication . 92
Creating a Middleware Factory . 94
Currying and Middleware Factories . 95

Sa
mp
le

ÎÈç�Èçà ø¯¯

Go Further . 97
Hashing Passwords . 97

8 Authentication with JSON Web Tokens 99
Proof of Verification . 99
JSON Web Tokens . 100
Issuing Tokens . 100
Signing Tokens . 103
Dissecting a Token . 104
Accepting JSON Web Tokens . 105
Dealing with Invalid Tokens . 108
Decoupling with Middleware Factories . 109
Go Further . 111

Environment Variables . 111

9 Authorization Design Patterns 113
Adding Authorization to a Route . 113
Authorization Design Flaws . 114
Extracting Authorization to Middleware . 115
Policies and Enforcers . 117
Simplifying Policies . 121
Enforcing Policies with Exceptions . 124
Sustainable Security . 125
Go Further . 126

Enforce All the Things . 126
Private Attachments . 126

Index 127

Sa
mp
le

+ÈèÝÏ�í�è¯ÏÈ

Learn the design patterns that transcend Express.js and recur throughout high-
quality production codebases.

You’ve built backends in another language for a decade. You’re a seasoned frontend
JavaScript developer. You’re a recent web bootcamp graduate. You’re searching for an
Express.js primer that isn’t another screencast or exhaustive reference guide.

If any of those personas describe you, and you want to:

• Learn the intuitions of developing elegant, maintainable backends.
• Learn without the distractions of every tangential tool in the ecosystem.
• Solidly grasp the motivation behind each concept as you build step-by-step.
• Expand your design palate with patterns that will transfer to other platforms.

This book is for you. The pedagogical approach of this book is aimed at transferring
design intuitions — motivated by real-world consulting experiences — in the fastest
way possible. That translates to a razor-focused topic scope and no contrived examples
to motivate tools you probably won’t use, or shouldn’t be using because they indicate
deeper “code smells.”

If you’re looking for an exhaustive Express reference guide, prefer to read passively, or
value books and video courses by their length, this book isn’t for you — unless you’re
looking for a handsome adornment for your bookshelf!

q¬ÿ �þÚÝ�ááʩ

Express is arguably the ubiquitous library for building Node backends. It is partly re-
sponsible for Node’s surge in popularity, and many other Node frameworks build on top
of Express. As of mid-2019, it is a dependency of 3.75 million codebases on Github alone.
So if you hop into a Node codebase, chances are Express is part of it.

Express 5 is in development, but because a sizable group of tech giants depend on the
API — directly or through a dependency — Express has essentially been on feature freeze
for some time and is unlikely to see substantial overhauls.

This book steers away from version peculiarities and clever utility methods in favor of
good design patterns. Thanks to these patterns, the backend we will build together has
been rewritten in two other Node.js backend libraries with minimal changes.

þ¯

Sa
mp
le

þ¯¯ +ÈçÜÎ�ì�ç¯ÎÈ

Good design in an Express.js backend is good design anywhere. Some design patterns
may be more idiomatic in one language than another, but the patterns you learn to de-
velop Node backends will outlive Express and influence your design approaches in unre-
lated platforms.

�ÚÚÝÏ��¬

There are countless books out there on backend design, so what makes this one differ-
ent? In a word, the approach.

Many well-meaning books and courses are built on a more-is-better ethos: a single step-
by-step course about Express is crammed with tangential topics like ES2015 JavaScript,
databases and React. When the teaching approach and learning outcomes become sec-
ondary to the topic list, the result is a grab bag of goodies that entertains the developer
rather than educates.

As a globetrotting educator, author and international speaker with a passion for craft,
I’ve guided hundreds of developers — from career switchers to senior developers at For-
tune 100 companies — through their journey into web development.

Both in the workplace and in the classroom, I’ve watched the entertainment model of
learning cripple developers. So over the last six years of teaching one to sixteen week
bootcamps, I’ve developed a pedagogical approach for developers at all skill levels.

Pedagogy — the method and practice of teaching — asks the essential question, what
does it mean to teach well? My approach to vocational teaching is based on a few axioms:

• Teach and apply one concept at a time to minimize cognitive load.
• Focus on contextual learning.
• Leverage the ability to generalize concepts and apply in new contexts.
• Emphasize transmutable concepts.
• Dispel magic by building magic from scratch.
• Encourage fearless curiosity that dispels magic.
• Facilitate self-discovery, then follow with reinforcement.
• Engender love for the abstract from the concrete — not the reverse.
• Transfer intuition — not concepts — as quickly as possible.
• Quality is inversely proportional to length. Conciseness is kindness in practice.

Like a well-designed app, good pedagogy becomes a transparent part of the learning
process by removing obstacles to learning — including itself!

`ÏÚ¯�á

This course focuses on best practice, conventional backend design for pure backend
APIs. It is not exhaustive, comprehensive or targeted at advanced Express developers
who are trying to scale huge legacy backends.

Sa
mp
le

RÜ�Ü�Ûì¯à¯ç�à þ¯¯¯

As we build a full-featured backend together, expect to work through:

• HTTP from scratch
• Request-response (life)cycle
• Express.js features that appear in high-quality codebases
• Testing backend routes with Insomnia
• Conventional headers for pure APIs
• Router design pattern
• Decoupling backend code
• Functional-style design patterns
• Currying and partially applied functions
• Dynamic segments
• Working with bodies
• Function objects
• Middleware
• Global vs. route middleware
• Middleware factories
• Common middleware libraries
• Authentication vs. authorization
• Password authentication
• Authentication with JSON Web Tokens
• Authorization design patterns

Because of this book’s razor-focused approach, it intentionally omits:

• ES2015–ES2017 JavaScript
• RESTful conventions
• Databases
• Node essentials
• Frontend
• Cookies and sessions
• Passport.js
• Templating
• Niche Express methods, especially if they are symptomatic of design flaws.

Instead, it is this book’s intention to equip developers — who already have a thorough
applied knowledge of JavaScript, some light Node experience, and who have preferably
built a backend before in any language or framework — with design insights.

RÝ�Ý�Üí¯á¯è�á

It is recommended that you have a strong foundation in JavaScript, preferably through
hands-on product development. If your JavaScript experience is academic or limited to
occasional hacking, the learning outcomes of this book may not be valuable.

Specifically, it is strongly recommended that:

• You have solid hands-on experience in JavaScript and Node.js.

Sa
mp
le

þ¯ø +ÈçÜÎ�ì�ç¯ÎÈ

• You are immensely comfortable with async programming in JavaScript with call-
backs, async functions and Promises.

• You have ES2015 (previously called ES6) under your belt, especially destructuring
syntax and arrow functions.

• You have an experiential understanding of HTTP, though a rigorous understanding
is unnecessary.

Some things are not required to get the most out of this book! You don’t need prior back-
end experience. If you understand how servers and clients interact, experience from
either side of the equation is sufficient.

:�èʘá "�è Yè�Ýè��

Throughout this book, we’ll be building a full-featured Express backend together called
Pony Express. Starting from an empty directory, we will intentionally bump into code-
base growing pains to motivate functional design patterns and Express features.

But first, in the next chapter we’ll detour from Node altogether and demystify the core
abstraction of the web: HTTP.

Sa
mp
leR�Ýè +

�þÚÝ�áá �áá�Èè¯�Áá

ȼ

Sa
mp
le

¬�Úè�Ý Ⱦ

�þÚÝ�áá UÏíè�Ý

Backend APIs often respond to hundreds or thousands of unique method and path
combinations. Each method and path combination — such as GET /users or
POST /emails — is called a route. But no matter how many routes your backend API
supports, every single request will need to be processed by a single request handler
function. That means index.js will grow with every new route: even if each route took
only one line of code, that’s a large file and a nightmarish recipe for merge conflicts.

How can we architect the request handler callback such that, for every new route, the
number of files grows while the average file length stays the same? Put another way,
how do we design a backend so the codebase scales horizontally instead of vertically?

U�¥��èÏÝ¯È¦ ù¯è¬ è¬� UÏíè�Ý R�èè�ÝÈ

The easiest way to accomplish this is by applying the Router design pattern, not to be
confused with Express’s Router API. The Router design pattern is a common refactor to
obliterate ballooning switch statements or if...else statements that share similar
predicates.

There are a few steps to apply this design pattern:

1. Extract the body of each case into a function.
2. Replace the body of each case with an invocation of that function.
3. Create a map from each predicate condition to its corresponding function.
4. Replace the switch or if...else statement with one function lookup and invo-

cation.

One of the strengths of this refactor is that, at each step in the refactor, the code should
still run so you can catch bugs early on. Try not to skip ahead, but take the refactor one
step at a time.

In the request handler of index.js , extract the body of each case into a function:

ȽȾ

Sa
mp
le

Ƚȿ
¬�Ùç�Ü ŴƼ �ýÙÜ�àà UÎìç�Ü

index.js

[···]

let app = express();

+ let getUsersRoute = (req, res) => {
+ res.send(users);
+ };
+
+ let getEmailsRoute = (req, res) => {
+ res.send(emails);
+ };

app.use((req, res) => {
[···]

The second step is to replace the body of each case with its function. If your functions
were invoked with slightly different arguments, you’d need to do a little extra refactoring.
Since both routes have the same function signature, we can continue with the refactor:

index.js

[···]

app.use((req, res) => {
let route = req.method + ' ' + req.url;

if (route === 'GET /users') {
- res.send(users);
+ getUsersRoute(req, res);

} else if (route === 'GET /emails') {
- res.send(emails);
+ getEmailsRoute(req, res);

} else {
res.end('You asked for ' + route);

}
});

[···]

Our code should still work after each step in the refactor, so give your GET /users and
GET /emails routes a quick test with Insomnia.

Sa
mp
le

U�¥��çÎÜ¯È¦ ø¯ç¬ ç¬� UÎìç�Ü R�çç�ÜÈ Ƚɀ

The third step is to create some sort of mapping from the predicate condition to a corre-
sponding route. Since the if...else conditions are always a comparison with a string
like "GET /emails" , we can use a plain ol’ JavaScript object:

index.js

[···]

let getUsersRoute = (req, res) => {
res.send(users);

};

let getEmailsRoute = (req, res) => {
res.send(emails);

};

+ let routes = {
+ 'GET /users': getUsersRoute,
+ 'GET /emails': getEmailsRoute,
+ };

app.use((req, res) => {
[···]

The fourth and final step is to replace the if...else cases with a single lookup in the
list of routes:

Sa
mp
le

ȽɁ
¬�Ùç�Ü ŴƼ �ýÙÜ�àà UÎìç�Ü

index.js

[···]

app.use((req, res) => {
let route = req.method + ' ' + req.url;

+ let handler = routes[route];

- if (route === 'GET /users') {
- getUsersRoute(req, res);
- } else if (route === 'GET /emails') {
- getEmailsRoute(req, res);
+ if (handler) {
+ handler(req, res);

} else {
res.end('You asked for ' + route);

}
});

[···]

What about that last else statement? We still need a fallback to catch any unknown
routes like GET /spam , but you could extract the logic into a separate function like
noRouteFound() to remove the if...else statement altogether:

Sa
mp
le

�ýÙÜ�àà UÎìç�Ü Ƚɂ

index.js

[···]

+ let noRouteFound = (req, res) => {
+ let route = req.method + ' ' + req.url;
+ res.end('You asked for ' + route);
+ };

app.use((req, res) => {
let route = req.method + ' ' + req.url;

- let handler = routes[route];
+ let handler = routes[route] || noRouteFound;

- if (handler) {
handler(req, res);

- } else {
- res.end('You asked for ' + route);
- }

});

[···]

Send a few requests with Insomnia to make sure the routes still work. Huzzah! We elim-
inated a growing if...else statement, and in the process extracted individual routes
outside the request handler.

�þÚÝ�áá UÏíè�Ý

Now that we’ve applied the Router design pattern, which part is the “router”? In this
context, a Router is a function whose only responsibility is to delegate logic to another
function. So the entire callback to app.use() is a Router function!

Let’s make this a bit more obvious by assigning the request handler callback to a variable
before passing it to app.use() :

Sa
mp
leR�Ýè ++

@¯��Á�ù�Ý�

ɀȾ

Sa
mp
le

¬�Úè�Ý ɀ

@¯��Á�ù�Ý�

Often the same behavior needs to be added to a group of routes. For example, most
backends log every incoming request to the terminal for debugging and production au-
dits. How could we add logging to Pony Express?

Right now, it’s simple enough: we just prepend console.log() to each route function.
For example, we could start in routes/emails.js :

routes/emails.js

[···]

let getEmailsRoute = (req, res) => {
+ console.log('GET /emails');

[···]
};

let getEmailRoute = (req, res) => {
+ console.log('GET /emails/' + req.params.id);

[···]
};

let createEmailRoute = async (req, res) => {
+ console.log('POST /emails');

[···]
};

[···]

Well, that’s awful. console.log() is basically copy-paste with minor changes, so if
we ever want to change the logging style, we would need to update each instance of
console.log() . We can solve that partly by moving the duplication into a function, but
we will still need to invoke that function in every route.

ɀɀ

Sa
mp
le

ɀɁ
¬�Ùç�Ü ŶƼ @¯��Á�ø�Ü�

Go ahead and delete all those console.log() statements from routes/emails.js .
How can we prevent this duplication and add logging behavior to all routes without
modifying them?

ÝÏáá
íèè¯È¦ ù¯è¬ @¯��Á�ù�Ý�

Express provides a method — app.use() — to insert a function that runs before any
routes below it. Let’s try it in index.js :

index.js

[···]

let app = express();

+ let logger = (req, res, next) => {
+ console.log(req.method + ' ' + req.url);
+ };

+ app.use(logger);
app.use('/users', usersRouter);
app.use('/emails', emailsRouter);

[···]

Notice the signature of the logger() function. Like a route function, it receives a re-
quest and response object, but it also receives a third argument called next . Any func-
tion with this signature is calledmiddleware.

When a request comes in, the logger() middleware function runs before any of the
routers added below it with app.use() . These functions are called middleware because
they are sandwiched between each other, and the collective sandwich of these middle-
ware functions is called themiddleware stack.

Sa
mp
le

ÜÎàà
ìçç¯È¦ ø¯ç¬ @¯��Á�ø�Ü� ɀɂ

Request Response

logger(req, res, next)

usersRouter(req, res, next)

emailsRouter(req, res, next)

next

next

next

app(req, res)

Middleware
Stack

app.use(logger);

app.use(usersRouter);

app.use(emailsRouter);

Figure 5.1: Each middleware function in the stack gets to run before those below it.

You may not have realized it, but there were already a couple layers in your middleware
stack: usersRouter() and emailsRouter() are middleware functions! Every instance
of app.use() adds a new layer to the bottom of the stack.

Hop into Insomnia and try a few requests like GET /users and GET /emails . In the
terminal, the backend now prints out the request method and path for any route! How-
ever, Insomnia seems to be hanging:

Figure 5.2: Looks like the request is hanging.

What’s going on? Middleware functions have a lot of power: not only can they be
inserted before routes, but they can decide whether to continue to the routes or skip
them altogether! To continue to the routes — the next layer in our middleware stack —
the middleware must invoke the third argument it received, next() :

Sa
mp
leR�Ýè +++

�íè¬�Èè¯��è¯ÏÈ ˸ �íè¬ÏÝ¯Ą�è¯ÏÈ

ɃȾ

Sa
mp
le

¬�Úè�Ý Ƀ

�íè¬�Èè¯��è¯ÏÈ ù¯è¬ 6YGAq�� `Ï¾�Èá

Sending credentials with each HTTP request is straightforward, but as backends grow,
the surface area for security vulnerabilities also grows. By sending credentials with ev-
ery request, an attacker has plenty of opportunities to compromise user credentials.

Security isn’t the only downside to sending credentials with each request — it also handi-
caps architecture and scaling options. Here are a few examples:

• Every endpoint or server must first verify credentials for each request. That can
quickly become a performance bottleneck: password hashing algorithms like
bcrypt are secure because they are designed to be time consuming — ¼ to one
second. That will noticeably delay every request.

• It’s harder to scale backend services across separate servers because each server
must support user authentication, creating a central bottleneck.

• The backend can’t easily track which devices have used the account or allow the
user to audit and revoke access without resetting their password. Likewise, it’s
difficult to grant restricted access to certain devices.

• It’s difficult to provide alternative authentication methods — such as Single Sign
On (SSO) services — without drastically changing how clients interact with the
API.

None of these are deal breakers early on, and premature optimization is a dangerous
trap. But luckily there’s an easy way to delay these pain points and simplify backend au-
thentication!

RÝÏÏ¥ Ï¥ p�Ý¯Ĝ��è¯ÏÈ

To cross country borders at an airport, you must prove your identity and citizenship.
One way to do that would be to carry your birth certificate and government-issued ID
with you at all times. However, it is time consuming to verify these documents, and bor-
der control would need access to your home country’s citizen database, plus the exper-
tise to verify those documents.

ɄɄ

https://en.wikipedia.org/wiki/Bcrypt

Sa
mp
le

ȼȻȻ
¬�Ùç�Ü ŹƼ �ìç¬�Èç¯��ç¯ÎÈ ø¯ç¬ 6YGA q�� `Î¾�Èà

Instead, you present a passport at the border to prove your identity and citizenship. A
passport has security features that make it difficult to tamper with and relatively fast to
verify.

The actual documents still need to be verified, but only when you pick up the passport.
That process could take weeks to months, but it only needs to happen every ten years. If
your passport is stolen, it can be invalidated without compromising your birth certificate
and government-issued ID.

In other words, a passport is proof that your documents were verified.

6YGAq�� `Ï¾�Èá

Like a passport, a JSON Web Token (JWT, or simply “token” in this chapter) is a tamper-
resistant document that proves you have verified your identity using credentials like a
username and password. To make authenticated HTTP requests, a client submits their
username and password once to be issued a JWT. On all subsequent HTTP requests, the
client includes the JWT instead of credentials.

To support token authentication, we need to build two pieces:

1. A “passport office” where a client exchanges credentials for a JWT.
2. Middleware like basicAuth() that checks for a valid JWT with every HTTP re-

quest.

+ááí¯È¦ `Ï¾�Èá

First we’ll create a “passport office” at POST /tokens . Create a new router in
routes/tokens.js :

https://jwt.io/

Sa
mp
le

+ààì¯È¦ `Î¾�Èà ȼȻȼ

routes/tokens.js

+ const express = require('express');
+ const bodyParser = require('body-parser');
+ const findUser = require('../lib/find-user');
+
+ let createTokenRoute = (req, res) => {
+ let credentials = req.body;
+ let user = findUser.byCredentials(credentials);
+ console.log(user);
+ };
+
+ let tokensRouter = express.Router();
+
+ tokensRouter.post('/', bodyParser.json(), createTokenRoute);
+
+ module.exports = tokensRouter;

Mount the tokensRouter in index.js :

index.js

[···]

+ const tokensRouter = require('./routes/tokens');
const usersRouter = require('./routes/users');
const emailsRouter = require('./routes/emails');

[···]
app.use('/uploads', serveStatic(path.join(__dirname, 'uploads')));

+ app.use('/tokens', tokensRouter);
app.use(basicAuth(findUser.byCredentials));
[···]

Create a new Insomnia request to POST /tokens and include a JSON-formatted re-
quest body with a username and password:

Sa
mp
le

+È��þ

abstraction, 3
Authentication, 85
Authorization, 85, 113

client, see also user agent
cohesion, 3
cross cutting concerns, 58
CRUD, 48

design pattern
Factory design pattern, 70
Router design pattern, 23

Domain Specific Language, 3
Dynamic Segments, 30

enforcer, 117
environment variable, 111
Express, 19

function objects, 29

HTTP, 3
method, see also HTTP, verb
verb, see also HTTP, method
version, 6

Hypertext Transfer Protocol, see also
HTTP

JSON Web Token, see also JWT
JWT, see also JSON Web Token

middleware, 56
error handling middleware, 65
Middleware Factory, 70
middleware stack, 56

multipart form data, 74

nodemon, 18
npx, 18

partially applied function, 96
policy, 117

request
body, 39
header, 6
path, 6
request-response cycle, 7

request handler, see also request listener
request listener, see also request handler
response

body, 7
headers, 7
status code, 7

route, 14, 23
Router, 27

telnet, 4

user agent, see also client

which, 4

ȼȽɂ

	Acknowledgments
	Technical Reviewers

	Introduction
	Why Express?
	Approach
	Topics
	Prerequisites
	Let's Get Started

	I Express Essentials
	How Servers Talk
	HTTP: The Core Abstraction of the Web
	Installing telnet
	On Linux
	On macOS

	An HTTP Conversation with telnet
	Talking to a Backend API
	Making Requests with Insomnia
	Go Further

	Responding to Requests
	Simple Servers with the http Module
	Speaking HTTP over Telnet
	Responding to Different Routes
	Hello, Express
	Express Shorthands
	Go Further
	Multiple Response Types

	Express Router
	Refactoring with the Router Pattern
	Express Router
	Functions with Methods
	Routes with Dynamic Segments
	Using Multiple Routers
	Extracting Routers into Files
	Go Further
	Routing on the Accept Header

	Working with Request Bodies
	Request Body Lifecycle
	Reading Request Bodies
	Finishing Up the Create Endpoint
	Update and Delete
	Express .route() Method
	Go Further

	II Middleware
	Middleware
	Cross Cutting with Middleware
	Passing Data to Routes
	Route Middleware
	Middleware is Everywhere
	Go Further
	Error Handling Middleware

	Common Middleware
	Logging with Morgan
	Body Parser
	Middleware Factories
	Compression
	Serving a Frontend
	File Uploads with Multer
	Serving Static Files with a Path Prefix
	Accepting Multiple Body Types
	Go Further
	URL Encoded Bodies
	PATCH Things Up
	MIME Types

	III Authentication & Authorization
	Basic Authentication
	Authorization Header
	Handling Authentication with Middleware
	Graceful Global Middleware
	Requiring Authentication
	Creating a Middleware Factory
	Currying and Middleware Factories
	Go Further
	Hashing Passwords

	Authentication with JSON Web Tokens
	Proof of Verification
	JSON Web Tokens
	Issuing Tokens
	Signing Tokens
	Dissecting a Token
	Accepting JSON Web Tokens
	Dealing with Invalid Tokens
	Decoupling with Middleware Factories
	Go Further
	Environment Variables

	Authorization Design Patterns
	Adding Authorization to a Route
	Authorization Design Flaws
	Extracting Authorization to Middleware
	Policies and Enforcers
	Simplifying Policies
	Enforcing Policies with Exceptions
	Sustainable Security
	Go Further
	Enforce All the Things
	Private Attachments

	Index

